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THE INEFFICIENCY OF LEAST SQUARES:
EXTENSIONS OF KANTOROVICH INEQUALITY

C. Radhakrishna Rao

ABSTRACT

Four different measures of inefficiency of the simple least
squares estimator in the general Gauss-Markoff model are considered.
Previous work on the bounds to some of these measures is briefly

reviewed and new bounds are obtained for a particular measure.

Keywords: Inefficiency of least squares, Kantorovich inequality.
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1. INTRODUCTION
Let us consider the usual Gauss-Markoff model
2
Y = X8 +¢, E(¢) =0, D(e) = 07V (1.1)

where Y and € are n-vectors, B is an m-vector, X is an nxm matrix and
2 .
0V , the dispersion matrix of €, is positive definite. In practice

V may be unknown in which case the estimate of 8 is computed by

choosing an apriori dispersion matrix Va in the place of V. A number
of authors have investigated the loss of information in the estimation
of £ resulting from a wrong choice of V. See for instance, Bloomfield

and Watson (1975), Khatri and Rao (1981,1982), Knott (1975) and

Styan (1983). The object of the present paper is to review some of the
earlier results and provide a generalization of a recent result by
Styan (1983).

There is no loss of generality in assuming Va = I, for the problem
associated with Va and V, when Va is positive definite, is the same as

that with I and V;l/z \' V;I/

2 for purposes of the present investigation.
Also, we consider the basic parameter as X8 and study the inefficiency
of its estimation due to a wrong choice of V. In such a case, we can,
without loss of generality, consider X to be of full rank with its
column vectors as orthonormal. Then the simple least squares estimator

and the BLUE of XB are

1

XX'Y and x(x'v’lx)' x'vly (1.2)

2
with the dispersion matrices (apart from the multiplying constant g )

XX'VXX' and x(x'v'lx)'lx' . (1.3)
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If v="P . P' is the spectral decomposition of V, where P is an ortho-
gonal matrix and A 1s a diagonal matrix of eigenvalues of V, then

the matrices in (1.3) can be written as
PUU' A UU'P' and PU(U'A-IU)-IU'P' (1.4)
where U = P'X and hence U'U = I. 1In the next section we define a

number of measures of inefficiency based on a comparison of the

matrices in (1.3) for (1.4) and determine their lower and upper bounds.
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2. MEASURES OF INEFFICIENCY AND THEIR BOUNDS

By construction, the difference between the first and second

A

matrices in (1.4) is non-negative definite and the magnitude of the

difference can be judged by the magnitudes of the proper nonzero

Alal 4 ‘o L s a p

eigenvalues (Rao and Mitra, 1971, 124-126) of the first matrix with

Wt X
POW N S

respect to the second. If 6 is a proper nonzero eigenvalue, then
[} D1y, = ' -1.-1 tpt -
PUU' A UU'P'x = 6PU(U'A "U) "U'P'x (2.1) L

where the left and right hand sides of (2.1) do not individually 1

vanish., 1In such a case, multiplying both sides of (2.1) by U'P' and

writing y = U'P'x, we have

U'AUy = e(U'A'lu)’ly (2.2)

so that § is a root of the determinental equation
lutav - e(U'A'lu)'ll = 0. (2.3)

We may choose any increasing function of the roots 81,...,6m of

(2.3) as a measure of inefficiency, such as 61 N em or 614-...4-6m.

Bloomfield and Watson (1975) and Knott (1975) have established the

bounds
2
m s (A, +2 )
1<ne, < ] —b8-idd (2.4) |
1 i=1 Axixn—i+1 -
where 1, > A, ... 3_An are the diagonal elements of A (i.e., the E

eigenvalues of V) and s = min(m, n-m). Khatri and Rao (1981) estab-

lished that —

2
(A1+An—i+1)

+t (2.5)

=)
A
@
|A
a1

A -i41

U N

where s = min(m, n-m),and t = 0 if s =mand t = 2m-n if s = n-m.
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Puntanen (1982) suggested the use of

1

tr(PUU' AUU'P' ~ PU(U'A'IU)“ u'p') (2.6)

as a measure of inefficiency. The expression (2.6) reduces to
' =l -1
tr(U'AU - (U'A TU) ). (2.7)
In the special case when m = 1, Styan (1983) showed that
. a=lo-1 o S y2
0<U'"AU -~ (U'A TU) < ( Al - An Yo, (2.8)
We provide the following generalization for higher values of m.

Theorem. For general m

\ NP S | g 2
0 <tr(U'AU - (U'ATD) ) < 121 (»’X_i -A ) (2.9)

where s = min(m, n-m).
Proof. We find the stationary values of (2.7) subject to the
condition U'U = I, Introducing a symmetric matrix A of Lagrangian

multipliers we consider the expression
' ' -1,.,,-1 '
tr U'AU - ex(U'A 1) - tr A(U'U - I). (2.10)

Taking derivatives of (2.10) with respect to the elements of U (see

Rao, 1984) and equating to zero, we have

U'A + (U'A'lu)'2 va”l - A (2.11)

which gives

1—

UAU + (U (2.12)

'
>

¢ Then the equation (2.11) reduces to

-1

U'A + (U'/\'lu)'2 U'A" " = (U'AU + (U'A'IU)'I)U'. (2.13)

Multiplying both sides of (2.13) from the right by AU

2 1

U AU + (U'A'IU)' = (U'AU)2+(U'A‘IU)"1(U'AU) (2.14)
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which shows that the last term in (2.14) is symmetric or the matrices
-1
U'AU and U'A U commute. Then, there exists an orthogonal matrix Q

such that

U'AU = QEQ' and U'A_lU=QA Q' (2.15)

where A and E are diagonal matrices with diagonal elements, say,

dl""'dm and e

170y Writing W = UQ, the equation (2.13) becomes

-2 1

Lya™ = W(E + A7), (2.16)

AW+ AT

Let (wl,...,wn)' be the j-th column of W, Then

-1 -2 -1 ~
VWi by wpdlt = wile, #47), 1= 1,000 (2.17)

which shows that at most two values of wo can be nonzero. 1If wr and
w_ are non-zero, then

A+ d. "= (e +dJT) (2.18)
has two roots Ar and Xs’ and it is seen that

-1 2
ej-dj _(/X:-/z). (2.19)

If only one w, is non-zero, then
e, -d." = 0. (2.20)

The expression we have to maximize is

1

tr(U'AU - (U'A'lu)'l) tr(E - A

)

Ey -1
) (ej -4 (2.21)
1

where each term in (2.21) has the value zero as in (2.20) or a value of
the type (/Y: - /K;')z as in (2.19). Using arguments similar to those
in Bloomfield and Watson (1975) and Knott (1975), we find the maximum

of (2.7) is

S
Yy O, - )2 (2.22)
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where s = min(m, n-m), which proves the required result.

Remark 1. 1In terms of the original matrices X and V where X need

not be assumed to have orthonormal columns, the matrices in (1.3) can
be written as

-1 -
PXVPX and PX(PXV PX) Py (2.23)

where PX = X(X'X)" X', the projection operator on the space generated

by the columns of X and () denotes any generalized inverse. Then the

result (2.,9) of the Theorem can be written as

-1
0 < tr(P VPy - Pu(PyV P ) < Z ORI

(2.24)

where Xi are the eigenvalues of V. Let X, be the corresponding eigen-

vectors and denote

%9 2 A\ 2
i N n-i+1
&y = . i . Xn-i+1
MY i Mo e

(2.25)
It is seen that the upper bound in (2.24) is attained when the columns
of X are generated by the vectors 51,...,53 and some x; vectors
orthogonal to El,...,Es.

Remark 2. When m = 1, simple proofs are available for the

inequalities (2.4) and (2.9) as given by Styan (1983).
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3. ANOTHER MEASURE OF INEFFICIENCY

In a paper presented at the Fifth Berkeley Symposium in 1965, the
author showed that there is no loss of information in estimation by
simple least squares if V and X satisfy the condition X'VZ = 0 where
Z is any matrix with maximum rank such that X'Z = 0 (see Rao, 1967).

The equivalent condition PXV = VPX was given by Zyskind (1967). The

condition X'VZ = 0 = PVZ is equivalent to

= ' - \ = —
0 vaz(z Z) Z'vp PXV(I PX)VP

X X

2
= BV Py - (PXVPX) (PXVPX) . (3.1

Bloomfield and Watson (1975) considered (3.1) as a measure of

inefficiency and showed that

)
- P VP VP < ] (A

2
0 < tr(PyVPy L e
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